
Scaling Metrics
Maturity in a
Cloud Native
World

Scaling Metrics Maturity in a Cloud Native World / 02

03 Introduction

04 Lifecycle of Metrics Growth

05 Organization Maturity Ladder

06 Stage 1: Foundations

Scale of Data

Breadth of Queries

Technical and Operational Considerations

08 Stage 2: Growth & Evangelism

Scale of Data

Breadth of Queries

Technical and Operational Considerations

10 Stage 3: Complete Organizational
Intelligence

Scale of Data

Breadth of Queries

Technical and Operational Considerations

13 Introducing Levitate

Tiers

Policies & Governance

How is this all woven together?

20 Conclusion

Contents

Today, technology-focused companies across all industries — SaaS,
Financial Services, Media, and E-commerce — rely on cloud
infrastructure and micro-services to deliver value to customers. And,
by extension, profits for the business.

The benefits of a performant infrastructure must be very obvious, and
so must their degradations. The measurement and attribution of
performance in a complex software environment is called Observability.

Observability is built on the storage and retrieval of logs, traces, and
metrics. Logs are a mature problem and have significant innovations
and available tools. Traces and Time series metrics, on the other hand,
are relatively newer domains. We’re in the generation of ongoing
innovations in tracing and metrics data. And this is why the time is right
to introduce a new paradigm to keep up with their increasing variety,
volume, and velocity.

In this paper, we introduce — a fully managed, OpenMetrics,
Prometheus, and OpenTelemetry-compatible time series database for
your metrics.

Levitate

Introduction

Scaling Metrics Maturity in a Cloud Native World / 03

Scaling Metrics Maturity in a Cloud Native World / 04

Fig 2: New product surfaces, larger scale, and longer

retention cause growth in every dimension.

Modern Time Series
systems don’t have to grow
along a single axis of
Cardinality, Coverage, or
Retention alone. Instead,
the rate of ingestion and
exploration warrants an
expansion on all three axes.

Fig 1: Diagrams showing the beginning of metric growth across the dimensions of [1] retention, [2]

unique metric types, and [3] cardinality or instances

More

Metrics

Increased

Cardinality

Longer

Retention

The lifecycle of metric growth is loosely represented as this.

Lifecycle of Metric
Growth

Scaling Metrics Maturity in a Cloud Native World / 05

Table 1: Typical company profiles for different stages

↓ Stage No of Engineers No of Customers No of Services

Foundations 5 10 15

Operational
Readiness

30 50 20

Operational
Intelligence

100+ 1000+ 100+

Scale of Data
Breadth of Queries
Technical and Operational Considerations

The outcomes people want to achieve with Observability differ for different company
stages. We spoke with many organizations and could broadly classify the stages of
the organization based on one of the three dimensions:

Organization Maturity
Ladder

Scaling Metrics Maturity in a Cloud Native World / 06

Small teams, low complexity, and low business maturity mean that essential incident
detection is the focus rather than deeper intelligence over extended periods.

At this stage, teams set up fundamental alerts, such as checks on the availability of
critical components and whether ingress volume is below static thresholds. Alerts will
be added in response to new incidents rather than proactive analysis.

Breadth of Queries

In this initial stage, the scale of data is easily manageable. Architectural complexity
and number of instances or tenants are at their lowest, meaning unique time series
are low in number.

Data retention needs are also at their lowest at this stage, which is informed by the
breadth of questions discussed below.

Scale of Data

Table 2: Typical company profile for Stage 1

Stage No of Engineers No of Customers No of Services

Foundations 5 10 15

As a technology company deploys its first infrastructure components and services,
the early customers generate the first time series associated with the product
through their interactions and requests.

Foundation

Scaling Metrics Maturity in a Cloud Native World / 07

At this stage, a simple Prometheus set-up and a cloud provider’s monitoring tool kit
(e.g. AWS CloudWatch) are sufficient to meet a team’s needs. There’s no pressure to
do better centralization, operationalize scaling of your resources, or formally
democratize access to time series data.

Technical and Operational

Considerations

Fig 3: The most recent data is harnessed to build your primary alert pipeline

Scaling Metrics Maturity in a Cloud Native World / 08

Reliability is mostly powered by alerts. Leading indicators, like System Saturation,
Error Rate, and Queue Lags indicative of system strain, are aggressively used for this
alerting.

Breadth of Queries

The volume of data is continually increasing and seldom cleaned.

As engineers scale, complexity of software design increases. This is when tribal
knowledge gets embedded to pockets of this data. At any given point of time, it’s
hard to tell what data is important and what’s not.

To deliver quality customer experiences, teams aspire to find problems before their
customers. As a result, data retention needs are increased, coupled by ad hoc
querying in the times of degradations, or constant measurements via dashboarding.

Scale of Data

Tolerance towards failures diminishes. There’s more focus towards feature velocity.
This results in reducing the focus towards stability, performance measurement, data
hygiene etc... It’s typically where you see an explosion of infra and monitoring bills. At
this stage, orgs have a constant conflict between managing stability vs features.

As engineering and product teams ship more features, they need more data to
measure the efficacy of their changes. The most common methodologies used at this
point are charts and dashboards; which are widely shared across teams.

Table 3: Typical company profile for Stage 2

Stage No of Engineers No of Customers No of Services

Operational
Readiness

30 50 20

Growth & Evangelism

Scaling Metrics Maturity in a Cloud Native World / 09

To keep up with the ever increasing load on your database, you throw more
infrastructure and people at the problem. The uptimes, scalability, and the cost of the
metrics database becomes a top priority, resulting in dedicated DevOps teams.

While teams chase engineers to send more metrics, set up alerts and dashboards;
stakeholders grapple with the increasing cost and effort that goes into managing this
data. To keep efforts and cost in check, time must be spent auditing what metrics are
used, how much data retention is necessary, and prioritization of dashboards.

Technical and Operational

Considerations

Fig 4: Greater dashboarding and ad hoc query needs can require all parts of your data

Operational dashboards become numerous, and the queries get increasingly complex
— just another day at work for your time series database.

There are queries for real-time troubleshooting and queries for historical data to
analyze customer patterns and behavioral trends. And... there’s no way to tell which
one is important.

Querying needles in a haystack is expensive, and this slows down the database and
the teams, and the tools that depend on it. The end result means friction between
business, engineering, and infrastructure teams.

Scaling Metrics Maturity in a Cloud Native World / 10

Engineering teams must report on the historical performance of Service Level
Objectives to demonstrate improvement and consistency of customer experience. As
alerting is adjusted after new incidents, tests are conducted on historical data to
understand the impact of the changes. More advanced teams may implement MLOps
or AIOps approaches to incident detection and diagnosis, which require more
historical data to find meaningful patterns.

Breadth of Queries

Growth explodes across all dimensions as new product lines, multi-region
deployments, and customer scale lead to a massive increase in metric data.

Scale of Data

As growth continues, metric data in a software company is no longer a regular
requirement of just the engineering team. Different business teams — across product,
finance, support, and customer success — will need to regularly access this data to
properly run a business.

Table 4: Typical company profile for Stage 3

Stage No of Engineers No of Customers No of Services

Operational
Intelligence

100+ 1000+ 100+

Complete Organizational
Intelligence

Scaling Metrics Maturity in a Cloud Native World / 11

Fig 6: The Time Series system is now the backbone of your Operational Intelligence

Other business units will establish regular reporting that depends on time series data
from the engineering team. Product teams will want to understand improvements and
degradations in the customer experience and the impact on the business. Finance
teams must report on customer lifetime value and margins to meet regulatory needs.
Customer success and support operations need access to data and alerts to provide
world-class customer service, proactive support, and fast debugging.

Fig 5: MLOps and AIOps primarily use historical
data for hunting patterns.

Scaling Metrics Maturity in a Cloud Native World / 12

Fig 7: The explosion of query surface area and use cases makes utilizing your database highly

competitive

Enterprises must dedicate full-time engineering resources to manage their time series
database at this stage.

Automation to scale with rapid changes in data shape and recovery from downtime
must be implemented and maintained.

To support needs across the business, teams create multiple database instances to
handle concurrency and implement query sharding to improve performance. They will
also implement a solution like Thanos or Cortex to enable long-term storage of metric
data. These implementations will cost significant engineering time to create and
maintain and make things operationally confusing for developers sending and
querying metrics.

Technical and Operational

Considerations

Scaling Metrics Maturity in a Cloud Native World / 13

That means your Prometheus agents can be lightweight transmitters.
Buh-bye storage concerns, and no data loss!

Levitate’s write availability SLA is ~99.9%,

with no work needed by your team!

Into this world of scaling time series data needs, we introduce a mission-critical time
series database that allows control over queries, and storage to build a cost-effective
and toil-free foundation for operational readiness.

Levitate is built for high query performance, high availability, and low latency writing.
Levitate automatically scales your data ingestion, query speed, and concurrency
needs.

Fig 8: Levitate gives you wheels.

Scaling Metrics Maturity in a Cloud Native World / 14

Teams only emit metrics to a single write endpoint from an integration perspective,
and data reaches each of the respective tiers. All tiers have all the fresh data, but
their data retention varies. Each tier functions as a completely independent time
series database but serves different concurrencies, query latency, and depths.

Fig 9: Example of Levitate Tiers

Inspired by principles of Data Warehousing, where Data Tiering is a common
phenomenon, Levitate introduces tiers for the Time Series storage.

Tiers

Table 5: Levitate Service Level Agreements

Operation Type Availability Durability

Read 99.5% Replication Factor 2

Write 99.9% 3 Availability Zones

Levitate’s standard read availability SLA is 99.5%, giving your team confidence that
your monitoring database won’t leave them blind during an incident.

Scaling Metrics Maturity in a Cloud Native World / 15

Additionally, Levitate offers powerful features to identify time series your team isn’t
using and trim data according to policies you create.

Policies are classified as Access Policies and Data Policies.

Policies and Governance

Retention Limit: Limit the data that is available in the Tier i.e. x months/days/hours.

Concurrency Control: Limit the active number of queries the Tier can handle
simultaneously. This is the most trustworthy indicator of Performance.

Range Control: Limit the number of days of data allowed to be looked up in a
single query. It directly impacts the number of data points or series loaded into the
memory.

Levitate can segregate data into virtual clusters, or Tiers, with distinct access control
parameters like:

You don’t just pay extra for what you don’t use;

you pay extra because of what you don’t use.

To understand the power of tiers, imagine the current situation where all the metrics,
used or unused, are saved in the database. Say there is an auto-refreshing dashboard
panel that greedily aggregates 6-months of payment failures saved per transaction
and renders it on a histogram chart.

Imagine five such dashboards, refreshing every 15 seconds. This is enough to bring
an 8-core, 32GB RAM database to its knees. During this period, the ingestion, as well
as critical alerting, gets impacted.

These are real on-the-floor problems with each team having 10+ dashboards per
service, and the nuisance compounds when you realize multiple teams are querying
for large data sets.

Scaling Metrics Maturity in a Cloud Native World / 16

Fig 11: Data Policies

Data Policies control how data moves in and out of Tiers based on Access Frequency

and Time .

Data Policies

Fig 10: Access Policies

Access Policies control how Tiers are engaged based on Access Methods .

Access Policies

Scaling Metrics Maturity in a Cloud Native World / 17

Table 6: Example policy configurations

There are four essential parts of Levitate (Policy, Query-Routing, Sync, and
Consumption Engines) that work together to ensure we bring down your total cost of
monitoring.

By tiering your data according to needs, improving dashboard speeds, trimming data
explosion, reducing the overheads to manage, and scaling a time series database,
Levitate is able to pass down obvious cost advantages to its customers.

Our existing customers have more than halved their storage costs with Levitate,
excluding advantages over reduced engineering overheads and their management.

Total Cost of Ownership (TCO)
Reduction

Policy Implications

Any token from Grafana will only read from
the Cold Tier.

Ensures that Grafana queries will NEVER
interfere with other high-priority traffic
reading from the Blaze Tier.

Infra-team token from Grafana will only
read from the Blaze Tier.

Ensures that when a Grafana panel uses an
Infra data source configured to use an

Infra-team token, Levitate will serve all
queries from that panel from the Blaze Tier,
which is fast but restricted to ONLY the last 1
hour of data.

An attempt by this panel to read more data
will only yield 1-hour of data.

Science-Read token from Anywhere will
only read from the Cold Tier.

Mandates that whenever the token supplied
is Science-Read , no matter where the
request originates, it will ALWAYS be served
from the Cold Tier.

Policy Samples

Scaling Metrics Maturity in a Cloud Native World / 18

Policy Engine

Heavily inspired by Sven Marquardt, the Policy Engine provides other
engines with the capability to express and evaluate data storage and
access rules. These rules can get pretty complex and also powerful.

Any token from Grafana will only read from cold Tier

Anything that isn’t used for seven consecutive days should be purged

from the Hot tier

01

There are four essential parts to Levitate.

Fig 12: Levitate’s routing layer creates a fast lane (yellow) for alerting queries and a slower lane (blue)

to handle dashboarding.

How is this all woven together?

Scaling Metrics Maturity in a Cloud Native World / 19

Consumption Engine

The smaller the data, the faster your system. As simple as that.

In the most steady state, what you don’t use is not retained. What you
use more is readily available in fast tiers.

The fundamental pivot is usage . The consumption engine keeps track of
metrics (later time-series) being consumed and makes them available
to all other engines.

04

Sync Engine

Very often, the database we read from is also the same one we write to.

In situations like these, a handful of highly greedy queries on the
database can also result in an outage and a blackout on ingestion.

Levitate separates the write and the read channels to overcome this,
allowing guaranteed ingestion no matter how bad the read loads may
be.

03

Query-Routing Engine

Just before the big sale day, I wish to switch all Grafana dashboards to
Cold Tier so that my alerting does NOT stop. At the same time, I would
like the Infrastructure team’s Grafana dashboards to be fast.

Based on tokens and source, a query routing engine can route the
queries to their rightful tiers. The overhead of evaluation is minimal
(single-digit ms).

02

Scaling Metrics Maturity in a Cloud Native World / 20

If these recurring points crop up, you know it’s time to take critical decisions on your
data storage strategies. Talk to us if you’re looking for a managed offering that can
put your engineering focus back on features, rather than the necessary distractions
of scale.

Dashboards are slow
There is a constant need to vertically scale a Time Series Database
Data is abundant, but it’s not being used
Teams have to be dedicated to managing Time Series lakes

Leaders want answers now, and the tooling has to be able to support that. One can
spend engineering on the features that customers love or on supporting
infrastructure, but not do both well. But, when there are no good choices available,
leaders are forced to rob Paul to pay Pete, slowing down the velocity at which
engineering can focus on the core product.

The four recurring patterns Observability Leaders hear:

The one thing that differentiates leaders and

laggards is that leaders have questions.

Observability is fast becoming a first-class citizen in an organization, and once you
set on it — data volume, variety, and velocity increase rapidly.

Conclusion

Last9 helps businesses gain insights into the Rube
Goldberg of micro-services. With two products, Levitate
& Compass, we help understand, track, and improve an
organization’s system dependencies. By reducing the toil
for platform engineering teams, they can now focus on
shipping reliable features & products.

Last9 recently raised a Series A round of $11 million,
backed by Sequoia Capital and prominent angel
investors.

To know more about us, visit , or reach out to us
on Twitter .

last9.io
@last9io

About Us

Scaling Metrics Maturity in a Cloud Native World / 21

https://last9.io
https://twitter.com/last9io

